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Abstract In the context of the Semantic Web, many ontology-related
operations, e.g. ontology ranking, segmentation, alignment, articulation,
reuse, evaluation, can reduced to one fundamental operation: comput-
ing the similarity and/or dissimilarity among ontological entities, and
in some cases among ontologies themselves. In this paper, we review
standard metrics for computing distance measures and we propose a se-
ries of semantic metrics. We give a formal account of semantic metrics
drawn from a variety of research disciplines, and enrich them with se-
mantics based on standard Description Logic constructs. We argue that
concept-based metrics can be aggregated to produce numeric distances at
ontology-level and we speculate on the usability of our ideas in potential
areas.

1 Introduction

We are currently witnessing a shift of participation in ontology authoring from
knowledge engineers to interested practitioners. This change is fueled, partly, by
ever growing interest in the Semantic Web and in semantic technologies in gen-
eral. It is causing an unprecedented influx of ontologies in the public domain. For
instance, as of March 2006 we encountered at least 100 Wine related ontologies
in various formats (e.g. OWL, RDF(S), DAML, etc.) and some 200 ontologies
with definitions of the omnipresent concept person. This emerging “grass roots”
approach to ontology engineering has put the onus on ontology management
and calls for a variety of new tasks, such as ontology ranking, segmentation and
evaluation, to name but a few. A common ingredient to accomplish these tasks
is the assessment of similarity/dissimilarity between concepts within ontologies
or between entire ontologies themselves.

We see several areas as relevant: knowledge representation, statistical clus-
tering, data mining, information retrieval, all of which have contributed to the
problem of computing similarity/dissimilarity between concepts. The very fact
that there are so many options indicates that reaching a consensus on how to
capture semantics embedded in ontologies is hard to achieve in the first place. We
are particularly interested in building upon all the work from different disciplines
and focusing on metrics leveraging the semantics of concepts.

In this paper we narrow our focus to the description logic (DL) based OWL
language. We investigate a series of distance measures that our semantic metrics



draw upon. These are discussed in Section 2. We then explore how different
metrics can be semantically enriched and applied to the computation of distances
between concepts in Section 3, and how can they be extended to ontologies
themselves (Section 4). Finally, in Section 5, we present three major applications
in which our metrics can be used as a complementary means of working with
and enhancing existing technology and we conclude the paper with several issues
that need further investigation.

2 Background

In this section, we review the meanings of distances in different disciplines from
which our semantic metrics are drawn. We restrict our focus on ontology lan-
guages whose underlying logic satisfies the Beth property, e.g. OWL-DL.

2.1 Distance measures

In mathematics, the concrete idea of distance between two spatial points has
been abstracted as a metric or distance function over a set S so that ∆ : S×S →
R where R, the set of real numbers, is the numeric representation of distance.
Stemming from the spatial distance between two points, the term distance has
been used in various domains and situations ranging from geometry and physics
to information theory. An orthodox distance function must be non-negative
and symmetric and satisfy the triangle inequality.

In two dimensional euclidean space, the distance between points, {p1, p2} and
{q1, q2}, can be computed as the City Block (Manhattan) Distance, the Euclidean
Distance, or the Chebyshev Distance. Analogous to the two dimensional space
distance, the Euclidean Distance is generalised in an m dimensional space to
Minkowski Distance, ∆Min (p, q) = (

∑
i | pi − qi |m)1/m.

The idea of distance, in the broader sense of measuring how far apart two
objects are, has been applied to the computation of the discrepancy between
documents in Information Retrieval (IR), disagreement between words in a lexi-
cal taxonomy in Knowledge Representation, and dissimilarity between strings in
Information Theory. The semantic metrics that we propose in this paper stem
from the general distance measures that are discussed as follows.

The vector space model (VSM) [19] has been widely used in traditional IR
to compute the similarity of documents. VSM creates a space in which both
the candidate documents and the queries are represented as vectors. Normally,
VSM proceeds in three steps: 1) document indexing: by extracting content bear-
ing terms from the document text, a document can be reduced to a vector of
indexing key-words; 2) index weighting: the key-words are weighted to enhance
the relevance between documents and the query; and 3) document ranking: the



numeric similarity values between vectors of key-words are obtained (see Equa-
tion 1, [19]) based on which, the documents can be sorted.

∆V SM (p, q) = − log simV SM (p, q) = − log

∑
i

pi × qi

√∑
i

p2
i

√∑
i

q2
i

. (1)

In information theory, entropy (denoted as H(X)) is borrowed from thermo-
dynamics to measure the information content of a message or uncertainty of a
message from the receiver’s perspective [21]. A full account of Shannon’s view
of the mathematical theory of information, however, is beyond the scope of this
paper. We restrict our focus to information gain with respect to one variable
based on the observation of another and use such a measure as distance between
arbitrary objects. This is captured by conditional entropy which measures how
much uncertainty a variable Y has, if the knowledge regarding another variable
X is completely known. Representing conditional entropy as H(Y | X), it may
be defined as

H(Y | X) = −
∑
x,y

p (x, y) log
p (x)

p (x, y)
(2)

In practice conditional entropy can be regarded as a divergence measure between
two variables, where H(X | X) = 0. The larger the conditional entropy, the less
information one gains from X with regard to Y and the further apart X and Y
are.

Meanwhile, in a discrete domain, the Kullback-Leibler divergence measures
the disagreement of two distributions. Let p and q be discrete distributions of a
variable, the “distance” between p and q is computed as

∆KL (p, q) =
∑

i

p i log
(

p i

q i

)

Note that the Kullback-Leibler divergence is not symmetric and is positive def-
inite [5]. It has several symmetrised variants that fit better as distance metrics.

2.2 Ontology and ontology languages

“What counts as an ontology?” is still a highly debated question with answers
ranging from simple taxonomies to logically sound and coherent constructs whose
underlying model supports logic inferences [2]. In order to discuss distances with
regard to ontological entities and with regard to ontologies themselves, we need
first to clarify our intuitions about ontologies. Instead of giving a full philosoph-
ical reflection on the term ontology, we take the Artificial Intelligence (AI) ap-
proach and restrict an ontology to be “a specification of a conceptualisation” [8].
Although the fact that many models, e.g. database schemata, UML models, and
Semantic Network models [22], can be considered ontologies in a broader sense,
we normally confine our view of conceptualisation to the following formalisation:



an ontology is a four-tuple 〈C,R, τc, τp〉, where C is a set of unary predicates
called concepts, R ⊆ C × C a set of binary relations called properties and τc and
τp introduction axioms of concepts and properties respectively.

Description Logics (DLs) are a family of knowledge representation and
reasoning formalisms that have attracted substantial research recently, especially
after the endorsement of DL-based ontology modelling languages (e.g. OWL [14])
by the Semantic Web initiative [3]. Among the three “sub-species” of OWL,
OWL-Lite is based on SHIF DL and OWL-DL is based on SHOIN DL [9].
DLs are based on the notions of concepts (i.e. unary predicates) and properties
(i.e. binary relations). Using different constructs, complex concepts can be built
up from primitive ones. Let CN denote a concept name, C and D be arbitrary
concepts, R be a property, n be a non-negative integer, oi (1 ≤ i ≤ n) be an
instance and >, ⊥ denote the top and the bottom. A SHOIN concept is:

CN | C u D | C t D | ¬C | ∃R.C | ∀R.C | ≥n R.> | ≤n R.> | {o1, . . . , on}
Meanwhile, SHOIQ extends SHOIN with qualified number restrictions, ≥n

R.C and ≤n R.C.
An interpretation I is a couple ( DI , ·I) where the nonempty set DI is the

domain of I and the ·I function maps each concept to a subset of DI while
mapping each property (role) to a subset of DI ×DI . The uniform syntax and
unambiguous semantics of DLs lend themselves to powerful reasoning algorithms
that can automatically classify the domain knowledge in hierarchical structures.

Thus far, many ontology languages have been proposed and standardised,
e.g. RDF(S) [12], OWL [14], etc. Despite the apparent differences, many of the
current ontology languages aiming at facilitating semantic web applications can
be regarded as tractable and decidable subsets of description logics.

3 Semantic metric of concepts

Distance between concepts is by no means a new idea. It can be approached from
two directions, extensional and intensional. Extensional approaches normally
assume an unbiased population of instance data from which a numeric similar-
ity/dissimilarity can be obtained by applying probability distributions, concept
co-occurrences and cosine measures of vectors, e.g. in [6] and [23]. Intensional ap-
proaches exploit features defined directly over the concepts and apply measures
such as Tversky’s model (e.g. in [4]) and graph-based ones (e.g. in [15]). More
specifically, graph-based methods represent ontologies as directed acyclic graphs
and count the total number of weighted edges, where the edges could be inheri-
tance relationships and/or properties. Feature-based methods characterise con-
cepts with discrete semantics bearing components, e.g. concept names, property
names, domains, etc. and take a weighted average of the similarity/dissimilarity
between each pair of components [13]. Both extensional and intensional meth-
ods have advantages and disadvantages. On one hand, it may be argued that
instance data can best capture the semantics and there are plenty of well stud-
ied techniques that can be leveraged. In reality, however, an unbiased population



is not always available, especially for ontologies published on the loosely regu-
lated Web. The applicability of such approaches, therefore, is highly suspect. On
the other hand, the intensional approaches would probably not win the battle
due to: 1) the ambiguity of converting semantic distinctions—e.g. equivalent,
more general than, etc.—into numeric values, 2) the computational complexity
demonstrated by both graph-matching and SAT problems, and 3) their reliance
on good modelling habits of those people constructing the ontologies. Intensional
ones might also require more involvement from human observers, e.g. weighting
different types of edges in graph-based algorithms. In this paper, we adopt an
eclectic approach: we produce signatures characterising the logical restrictions
of concepts and the distances of concepts are reduced to the distances between
different vectors of such semantics bearing signatures.

In this section and throughout the rest of the paper, two ontologies are used
as examples and test-beds for the proposed metrics. They are bibliography on-
tologies revised and simplified from publicly available ones and are denoted as
Om

1 and Op
2 respectively.

3.1 Concept as a set of signatures

Each concept in an ontology encapsulates a subset of instance data from the do-
main of discourse. In a broader sense, concepts are effectively constraint systems
against which instance data are evaluated. For instance, concept Book (defined
as in Figure 1 using DL-based constructs) specifies that a book is a Document
that has at least one title, at least one publisher, etc.

Book
.
= Documentu ≥1 hasTitleu ≥1 hasYear

u ≥1 hasPublisheru ≥1 humanCreator.Author

Author
.
= Humanu ≥2 hasPublication.Document

Document v > Human v >

Figure 1. Book in Op and related concepts

Unfolding concepts Semantics of concepts are embedded in DL-based con-
structs which need to be explicated before computing the distance. Concepts are
recursively unfolded till only primitive ones (i.e. concepts that are only defined
by names) appear on the righthand side of the concept introduction axioms. If
cyclic definitions are not allowed, i.e. such that no primitive concepts appear on
both sides of a concept introduction axiom, it is possible to unfold the righthand
side of all concept introduction axioms and guarantee the termination of such

1 http://visus.mit.edu/bibtex/0.01/bibtex.owl.
2 http://www.aktors.org/ontology/portal.



an unfolding process. For instance, let CN .= C′ ∈ O, CNi and RNj be concept
and property names appearing in C′ respectively, and (CNi

.= Ci) ∈ O and
(RNj

.= Rj) ∈ O. It is possible to thoroughly expand C′ by recursively replac-
ing defined concept names appearing on the righthand side of CN .= C′ with
the concept definitions in O, i.e. C [ CNi/Ci, RNj/Rj ] where [x/y] defines the
process of replacing all occurrences of x with y. Such a process terminates due to
the acyclic nature of O and results in a finite set of logic formulae. Subsequently,
semantic signatures are extracted from the unfolded concepts.

S: a non-empty set of instances; L: associating each a ∈ S with a set of
concepts; R: mapping each property to a subset of S × S. For all a, b ∈ S, if
C, C1, C2 are concepts and R is property:

ru: C1 u C2 ∈ L(a), then C1 ∈ L(a) and C2 ∈ L(a).
rt: C1 t C2 ∈ L(a), then C1 ∈ L(a) or C2 ∈ L(a).
r∀: ∀R.C ∈ L(a) and 〈a, b〉 ∈ R(R), then C ∈ L(a).
r∃: ∃R.C ∈ L(a), then ∃b.b 6= a and 〈a, b〉 ∈ R(R) and C ∈ L(b).
r≥: ≥n R.C ∈ L(a), then ∃b1, . . . bk.bi 6= bj and 〈a, bi〉 ∈ R(R)

and C ∈ L(bi) and k ≥ n.
r≤: ≤n R.C ∈ L(a), then ∃b1, . . . bk.bi 6= bj and 〈a, bi〉 ∈ R(R)

and C ∈ L(bi) and k ≤ n.

Figure 2. Transformation rules of some DL constructs [2]

We adopted the tableau construction rules used in many DL-based inferential
systems to facilitate the concept unfolding and the signature extraction process.
In Figure 3, we present an example of how Book (defined in Figure 1) is unfolded
by repetitively applying the transformation rules defined for each and every
DL construct (see Figure 2 for the rules of some DL constructs)—a detailed
description of such rules can be found in [2]. The unfolding process for Book stops
when only primitive concepts and properties, namely Document and Human,
remain. > is included for completeness.

As illustrated in Figure 3, concept Book is associated with one set of semantics-
bearing signatures that fully capture the meaning of Book by means of primitive
concepts and properties. There are two points to be addressed further. Firstly,
there might be cases where concepts are defined as the union of other concepts
that are either fully defined elsewhere in the same ontology or introduced as
anonymous ones. Applying indeterminate t unfolding rules (see Figure 2) results
in alternative sets of formulae, each of which captures part of the intended mean-
ing of the original concept. For instance, if we have “Human

.= MantWoman” and
Man and Woman as “. . .u∀hasGenderMaleu. . .” and “. . .u∀hasGenderFemaleu. . .”
respectively. After unfolding, we have two separate sets of signatures.

iCHuman
1 = {. . . , x : ∀hasGender.Male, . . .} or

iCHuman
2 = {. . . , x : ∀hasGender.Female, . . .}



0CBook
1 =

8
<
:

x : Documentu ≥1 hasTitleu ≥1 hasYearu
≥1 hasPublisheru ≥1 humanCreator.Author

9
=
;

1CBook
1 =

8
<
:

x : Documentu ≥1 hasTitleu ≥1 hasYearu
≥1 hasPublisheru
≥1 humanCreator.(Humanu ≥2 hasPublication.Document)

9
=
;

2CBook
1 =

8
<
:

x : Document, x :≥1 hasTitle, x :≥1 hasYear,
x :≥1 hasPublisher,
x :≥1 humanCreator.(Humanu ≥2 hasPublication.Document)

9
=
;

3CBook
1 =

8
<
:

x : Document, 〈x, y0〉 : hasTitle, 〈x, y1〉 : hasYear,
〈x, y2〉 : hasPublisher, 〈x, y4〉 : humanCreator,
y4 : Humanu ≥2 hasPublication.Document

9
=
;

4CBook
1 =

8
>><
>>:

x : Document, 〈x, y0〉 : hasTitle, 〈x, y1〉 : hasYear,
〈x, y2〉 : hasPublisher, 〈x, y4〉 : humanCreator,
y4 : Human, 〈y4, z0〉 : hasPublication.Document
〈y4, z1〉 : hasPublication.Document

9
>>=
>>;

5CBook
1 =

8
>><
>>:

x : Document, 〈x, y0〉 : hasTitle, 〈x, y1〉 : hasYear,
〈x, y2〉 : hasPublisher, 〈x, y4〉 : humanCreator,
y4 : Human, 〈y4, z0〉 : hasPublication, z0 : Document
〈y4, z1〉 : hasPublication, z1 : Document, x : >

9
>>=
>>;

Figure 3. Unfolding concept Book in Om

Secondly, property universal quantifications can only be further expanded when
there are instances defined over the property, i.e. y : Male is included, in the above
example, if and only if there are x : ∀hasGender.Male and 〈x, y〉 : hasGender. They
are left unexpanded otherwise.

The unfolding process stops when a fixed point is reached, i.e. nC = (n−1)C.
As demonstrated in [9], by carefully selecting a subset of admitted conceptual
constructs, e.g. the underlying logic models of OWL-Lite and OWL-DL [14], a
termination is guaranteed with respect to acyclic ontologies.

Weighting signatures Unfolding concepts can be seen as a process that grad-
ually makes the semantics (the intended meaning of concepts) explicit. As a
result, each concept is associated with finite sets of signatures in terms of the
primitive concepts and properties. Effectively, concepts are deemed to hold parts
of the information of the domain of discourse and thus, in spite of the apparent
difference between ontologies and documents in the general sense, techniques for
extracting and weighting document surrogates in IR can be applied analogically
to concepts.

A straightforward approach to evaluate the influence of semantic signatures
is to count the number of their occurrences in each Ci of C. A signature is com-
posed by the head (e.g. x and 〈x, y0〉 in Figure 3) and the tail (e.g. Document
and hasTitle in Figure 3) separated by a colon. When counting, the heads of the



signatures are ignored. The negative construct, ¬, states that the target concept
is explicitly excluded and thus value -1 is given to emphasise the restriction.
Unexpanded universal quantification, e.g. ∀R.B, is treated as an atomic signa-
ture, as the presence of B is uncertain in the absence of property R. In many
ontologies, for many fully defined concepts, the number of primitive concepts
and properties is small. Hence, we do not expect to encounter sparse vectors
very often. For example, Phdthesis and Mastersthesis (see Figure 4(a)) from Om

are unfolded as illustrated in Figure 4(b). Their signature vectors and that of
concept Book are presented in Table 1, where equal weights are assigned to every
signature.

Phdthesis
.
= Documentu ≥1 hasAuthoru ≥1 hasTitleu
≥1 hasSchoolu ≥1 hasYear

Mastersthesis
.
= Documentu ≥1 hasAuthoru ≥1 hasTitleu
≥1 hasSchoolu ≥1 hasYear

(a) Definition of thesis concepts

nCPhdthesis
1 =

�
x : Document, 〈x, y0〉 : hasAuthor, 〈x, y1〉 : hasTitle,
〈x, y2〉 : hasSchool, 〈x, y3〉 : hasYear, x : >

�

nCMastersthesis
1 =

�
x : Document, 〈x, y0〉 : hasAuthor, 〈x, y1〉 : hasTitle,
〈x, y2〉 : hasSchool, 〈x, y3〉 : hasYear, x : >

�

(b) Unfolded thesis concepts

Figure 4. Thesis concepts in Om

CBook
1 CPhdthesis

1 CMastersthesis
1

> (top) 1 1 1

Document 3 1 1

Human 1 0 0

hasAuthor 0 1 1

hasPublisher 1 0 0

hasPublication 2 0 0

hasTitle 1 1 1

humanCreator 1 0 0

hasSchool 0 1 1

hasYear 1 1 1

Table 1. Signature vector space of Book, Phdthesis, and Mastersthesis



Weights of signatures are fine-tuned 1) using the inverse document frequency
weight (idf ) [11] scheme from IR with the assumption that signatures appearing
in a small number of concepts are more significant for the purpose of discriminat-
ing between concepts than those that are frequently referred to by many concepts
and 2) by reducing the weights of signatures referred to indirectly through prop-
erties. Let N be the number of concepts in an arbitrary ontology O, nfk

the
number of concepts that refer to signature k, fk, and ffk,Ci the frequency of fk

in concept Ci, the tf-idf weight, wfk,Ci
, of fk in concept Ci is computed as

wfk,Ci
= ffk,Ci

× (log2 N/nfk
+ 1) , where nfk

6= 0.

In Om, signatures such as Document, hasTitle, and hasYear appear in most of the
concepts and thus are assigned low weights, whereas humanCreator appears in
only one concept and thus is regarded as more important than others. Weights of
indirect signatures are adjusted based on the weights of their related properties.
For instance, z0 : Document in Figure 3 is introduced because of humanCreator ◦
hasPublication and thus has less influence than x : Document. We decrease the
weight of z0 : Document to wDocument · whumanCreator · whasPublication.

Computing distances By representing concepts as signature vectors, distances
between concepts will then equal the distances between vectors in a high dimen-
sional space. When there are more than one resultant Ci due to disjunctive
constructs (see Section 3.1), the shortest distance is computed.

∆ (C,D) = min
(Ci of C,C′j of D)

τ(sim (Ci, C
′
j)) (3)

τ(sim (Ci, C
′
j)) =

{
− log

(
sim (Ci, C

′
j)

)
if sim (Ci, C

′
j) > 0

+∞ if sim (Ci, C
′
j) ≤ 0

(4)

sim (C, C′) =

∑
wi∈C, w′i∈C′

wi × w′i
√ ∑

wi∈C

w2
i

√ ∑
w′i∈C′

w′2i
(5)

sim (C, D) = max
(Ci of C,C′j of D)

sim (Ci,C
′
j) (6)

Due to the introduction of negative numbers for capturing the semantics of ¬,
there are possibilities for non-positive similarities based on Equation 5. A value
of +∞, therefore, represents a pair of totally divergent disjoint concepts.

After taking into account the weighting factors, signature vectors in Table 1
can be refined, and we can approximate the distances among concepts as:

∆ (Book, Phdthesis) = − log(sim (Book, Phdthesis)) ≈ 2.101
∆ (Book, Mastersthesis) = − log(sim (Book,Mastersthesis)) ≈ 2.101
∆ (Phdthesis, Mastersthesis) = − log(sim (Phdthesis, Mastersthesis)) ≈ 0



It demonstrates that the distance between the two types of theses is shorter
than that between theses and book. Such a conclusion is evident if we consider
properties as restrictions defined over concepts that screen out unqualified in-
stances from the domain of discourse. Book requires at least two hasPublication.
Intuitively, it presents a stronger constraint than those that do not have cardi-
nality restrictions on the hasPublication property and thus there might be fewer
instances satisfying all its restrictions. The zero distance between two types of
theses also suggests that these two concepts might not be properly defined in
that they are identical from the given signatures.

Discussion We see that our distance metrics have the following advantages.
Anonymous concepts, also known as restrictions, have always been the trouble
maker in graph-based and feature-based approaches. When unfolding concepts,
we expand restrictions together with other defined concepts, e.g. x : ∃R.C is
replaced by 〈x, y〉 : R and y : C. Anonymous concepts are, therefore, replaced
by semantics bearing signatures that explicitly state the constraints imposed on
the instances. We further collapse identical signatures so as to reduce the space
complexity. Moreover, despite the apparent similarity, transforming ontologies
into graphs cannot preserve the semantics acoup sur. Even with labelled edges,
graph-based methods always have difficulty in justifying the semantic signifi-
cance of transitive properties. For instance, it takes the distance between A and
C in A → B → C to be greater than that in A → C due to the fact that the
introduction of the interim node B increases the length between A and C. This
is intuitively incorrect and can be avoided if we fully unfold the interim con-
cept B to the most basic signatures as well. Furthermore, many feature-based
approaches adopt a weighting scheme to distinguish the contributions from dif-
ferent features, weights of which are normally set up manually by domain ex-
perts. We do not intend to undermine the importance of the role of human
experts in understanding semantics. We, nevertheless, would like to introduce
an automatic weighting mechanism to be complementary to their efforts. The
tf-idf scheme borrowed from IR proposes a weight for each semantics-bearing
(intensional) signature based on the significance of such a signature in introduc-
ing semantic discrepancies and thus is inline with the distance metrics. Finally,
we consider our metrics as an improvement on techniques from feature-based
families. This is evident partially from the fact that when constructing overall
similarity/dissimilarity as a weighted average, feature-based approaches assume
the semantic homogeneity of different features, which is not necessarily true.

4 Extending semantic metrics of concepts

In this section, we demonstrate how to generalise the semantic metric discussed
in previous sections to other ontology related measurements. Our work is based
on the argument that the distances between concepts offer a fertile ground
from which other metrics—that are effectively aggregations of concept-based
distances—can be introduced.



4.1 Distance between concepts from different ontologies

Computation of ∆(C, C′), where C and C′ belong to different ontologies, needs
to be bootstrapped by the similarity between primitive concepts and properties
from respective ontologies. Ontology Mapping/Alignment techniques have been
extensively studied recently and many tools have been developed to automat-
ically or semi-automatically map ontological entities [7,10]. When bootstrap-
ping ∆(C, C′), we require only the similarities between primitive concepts and
properties and thus simple string distance algorithms and/or those enhanced by
external general-purpose lexicons, e.g. WordNet [16], are sufficient.

The similarity function (Equation 5) is adjusted to reflect the similarities
computed by ontology mapping algorithms. Let wi and w′i be the weights of
signatures fi and f ′i from O and O′ respectively, C and C′ be the concepts from
O and O′ with C and C′ respectively and f ′i be the most similar signature of fi

with δi = sim (fi, f
′
i),

sim (C, C′) =

∑
wi∈C, w′i∈C′

δiwi × δiw
′
i

√ ∑
wi∈C

(δiwi)2
√ ∑

w′i∈C′
(δiw′i)2

(7)

Once obtained, the adjusted similarity between signatures can be used in Equa-
tion 4 and 3 to compute the similarity between concepts from different ontologies.

Book
.
= Publication u ∀published-by.Organization

Publication
.
= Reference u ∀has-author.Person u ∀has-date.Calendar-Dateu
∀has-place-of-pub.Location

Reference v > Location v > Calendar-Date v >
Organization v >

(a) Definition of Book and related concepts

nCBook
1 =

�
x : Reference, x : ∀has-author.Person, x : ∀has-date.Calendar-Date,
x : ∀has-place-of-pub.Location, x : ∀published-by.Organization, x : >

�

(b) Unfolded concept Book

Figure 5. Book and related concepts in Op

We use the Book concept from Op to explain how distance between con-
cepts from different ontologies can be computed. Book (see Figure 5(a)) from
Op is unfolded as illustrated in Figure 5(b). With the initial correspondences be-
tween primitive concepts (e.g. Reference versus Document) and properties (e.g.
hasPublisher versus published-by) from respective ontologies, which might be pro-
vided by an automatic mapping system or hand-crafted by human experts, we
computed the distance between the two book concepts to be approximately sim-
ilarly conceptualised. Apparently close concepts Book ∈ Om (denoted as Bookm)



and Book ∈ Op (denoted as Bookp) are effectively semantically different. The
absolute positive distance value between these two concepts indicates a seman-
tic divergence which is evident from the fact that Bookm requires all books to
have a title, a published year, a publisher, etc. while these are not mandatory
for Bookp—an instance does not need to have a title, author, date, etc. to be
qualified as a Book in ontology Op.

4.2 Distance between a concept and a set of concepts

There are occasions where the closeness is sought between a concept on the
one hand and a set of interrelated concepts as a group on the other hand. For
instance, one might need a measurement to represent how dense an ontology is
with regard to an arbitrary concept. Let C ∈ O be the target concept, D ∈ O a
concept from O that does not equal to C, Equation 2 can be rewritten as

∆ (C,O) = −
∑

D∈O, D 6=C

p (D | C) log p (D | C) (8)

If we emulate p (D | C) as sim (C,D) obtained using Equation 6, we can
then approximate the closeness of the ontology O around C by aggregating the
distances between C and every other concept in O. Note that sim () is symmetric
while p (D | C) does not equal p (C | D).

4.3 Distance between ontologies

As laid down in Section 2, we view ontologies as organisations of concepts and
thus the distance between ontologies is computed out of those between concepts
from the respective ontologies. In this paper, several methods are considered in
order to aggregate individual distances.

Summation of feature distances The city block distance—the sum of the
distances between individual signatures—is the simplest aggregation function.
Based on Equations 3 and 7, we define

∆ (O,O′) =

( ∑

Ci∈O
( min
C′j∈O′

∆(Ci,C
′
j))

λ

)1/λ

(9)

where λ might take the value of the number of concepts in O in which case the
distance measure is not symmetric.

The disadvantage of a Minkowski style distance function is that if the distance
between an arbitrary pair of signatures is significantly larger or smaller than that
of others, the aggregated result might be falsely amplified or diminished.



Kullback-Leibler (KL) model Also known as relative entropy, KL divergence
is a natural quasi-distance measure of the extent to which one distribution agrees
with another. In order to overcome the asymmetry of KL divergence, Jeffrey-
divergence is proposed. Let Ci ∈ O and C′i ∈ O′ be two concepts from respective
ontologies, then the distance between ontologies is computed as:

∆J (O,O′) =
∑

i

p (Ci) log
p (Ci)
p (C′i)

+
∑

i

p (C′i) log
p (C′i)
p (Ci)

An ontology is effectively a constraint system specifying how instances should be
distributed among different concepts. In an arbitrary domain of discourse, the
more rigorous the restrictions are, the fewer instances are qualified to instanti-
ate a particular concept. We define an imaginary “perfect” concept, C0, as one
imposed with no restrictions except the domain top, e.g. 〈owl:Thing〉. Assume,
the rigorousness of C0 is 0. We can then compute the distance from an arbitrary
“imperfect” concept Ck to C0 as ∆ (Ck). The probability distribution of Ck can,
therefore, be approximated as

p (Ck) =
1−∆ (Ck)

n∑
j=0

(1−∆ (Cj))
(10)

Asymmetric distance measure Variants of KL divergency are established on
the assumption that the ontologies are defined over largely overlapping domains
and thus distances can be estimated by examining the distributions of “imagi-
nary” instances. When such a prerequisite cannot be assumed, i.e. one does not
have a priori knowledge of the interpretation domains of ontologies, distance
ought to be obtained from mappings between fundamental semantics bearing
signatures and is deemed an aggregation of those computed using Equation 8:

∆A (O,O′) = −
∑

C∈O
p (C)

∑

D∈O′
p (C | D) log p (C | D)

where p (C | D) is the similarity based on Equation 6 and Equation 7 and p (C)
as in Equation 10. Note that ∆A is asymmetric, i.e. ∆A (O,O′) 6= ∆A (O′,O).

5 Discussion and Conclusions

The increasing interest in employing rigorous logics to underpin ontology mod-
elling languages has presented itself as a challenge to several ontology manage-
ment tasks. In such circumstances, as meaning is emphasised, it is not straight-
forward to identify the similarity/dissimilarity between concepts, which should
be a function of both syntactic and semantic divergences. In this paper, we
have demonstrated how concepts can be decomposed into semantics-bearing sig-
natures and how such signatures can yield distance measures among concepts,



between a single concept and a group of concepts, and how they may be gen-
eralised to compute the distance between ontologies. The proposed semantic
measures/metrics can be complementary to other metrics. Compared to tradi-
tional approaches, however, a DL-based one is capable of conveying not only the
syntactic but also semantic information.

We envisage several applications of our distance measures/metrics in the
context of semantically-enriched applications:

Ontology segmentation: An obvious application of the distance measures is
ontology segmentation. With the growing interest in tackling interoperability is-
sues, ontologies have quickly become a convenient vehicle for domain knowledge.
Extensive efforts from different communities have resulted in many enormous
knowledge corpora, especially in medicine, e.g. FMA [18] and GALEN [17]. The
sheer size of such ontologies has put a tremendous burden on ontology manage-
ment tools and have thus become a major obstacle to people who seek only a
small part of the knowledge encapsulated in such ontologies. Ontology segmen-
tation is envisaged as a neat solution to cope with the size issue. In a recent
paper [20], the authors extracted a semantically complete part of an ontology by
traversing upwards and downwards along links—concept inheritance relation-
ships and properties—with the guidance of heuristic rules. Other approaches in-
clude graph-based clustering, query-based partitioning, etc. It is our contention
that fragmenting an ontology is tantamount to computing semantic distance
between concepts. The success of a segmentation strategy, therefore, depends
directly on a good metric. As a complementary method to the existing segmen-
tation techniques, our distance measures detect the semantic disagreement of
different concepts and thus present criteria against which concepts can be fil-
tered in/out. For instance, if one would like to extract a set of concepts around
C, the segmentation can be formalised as segmentation(O,C, d) = {D | ∀D ∈
O.∆ (C,D) ≤ d} where d is an arbitrary real number.

Ontology ranking : Building an ontology is a time-consuming, error-prone
process that requires trained eyes and minds. The Web has made such a task eas-
ier by offering search-and-access functionality to various on-line ontology reposi-
tories [1]. A search engine normally returns a list of candidates ranked according
to a predefined ordering schema. Ranking resultant ontologies of a search query
is effectively finding the closeness of a group of concepts w.r.t. those specified in
the query. From discussions in Section 4.3, we have

∆ (Q,O) = −
∑

C∈Q

(
p (C)

∑

D∈O
sim (D, C) log(sim (D,C))

)

Note that queries might be fragments of ontologies and thus cannot be fully un-
folded. ∆ (Q,O), therefore, might vary depending on the semantic completeness
of queries and the initial similarities of respective semantics bearing signatures.
p (C) can be assigned manually by people submitting queries. As a default behav-
iour of querying, we assume people have some knowledge of the queries that they
are formulating, are able to justify the relative significance of different parts of
the queries, and can express the relative significance using numeric values. Hav-



ing obtained the distances between Q andOi from the candidate list,O1, . . . ,On,
one can then rank the resultant ontologies by comparing their numeric distance
values, e.g. ranking ontologies with smaller ∆ (Q,O) closer to the top of the list.

Ontology mapping : Ontology mapping is a complex and necessary task for
most Semantic Web applications. The prospective users of such technology are
faced with a number of challenges including ambiguity of the meaning of map-
pings, difficulties in capturing semantics, verification and validation of results
and operationalisation in beneficiary Semantic Web application. The approach
proposed in Section 4.1 provides a clear and straightforward metric for mea-
suring the semantic discrepancy between concepts from different ontologies. An
intuitive method is to nominate for a concept C from O1 a concept Di from O2

that minimises the distance ∆(C, Di).
Semantic metrics can be further improved. Firstly, universal quantification,

thus far, is regarded as an atomic signature. Although it is semantically coherent,
this approach might increase the size of signature corpus in practice. A possible
solution could be to consider ∀R.C as a complex signature whose weight is the
product of wR and wC. The appropriateness of such a weighting scheme, never-
theless, needs further evaluation. Secondly, the complement (negation) construct
results in a -1 count of the corresponding signature to differentiate it from miss-
ing signatures. It increases the possibility of similarities with negative numeric
values. Currently, we equally assume that a pair of concepts having negative
similarity do not overlap and thus are far apart from each other. We, however,
do not distinguish cases with smaller negative similarity values from those with
larger ones. The subtle differences between negative similarities might be neces-
sary to answer such questions as “are the distance of CuD and Cu¬D and the
distance between CuDuE and Cu¬Du¬E the same?” Although an answer can
be found indirectly by comparing similarities, a more elegant treatment is pre-
ferred. Finally, the use of two bibliography ontologies is only to demonstrate the
applicability of semantic metrics. More empirical evaluation and a comprehen-
sive comparative study against other approaches will further reveal the strengths
and weaknesses of our approach.

Acknowledgements

This work is supported under the OpenKnowledge and HealthAgents STREP
projects funded by EU Framework 6 under Grant numbers IST-FP6-027253 and
IST-FP6-027213, and the Advanced Knowledge Technologies (AKT) IRC funded
by UK’s EPSRC under Grant number GR/N15764/01. The authors are grateful
for the input of Srinandan Dasmahapatra in the preparation of this paper.

References

1. H. Alani and C. Brewster. Ontology ranking based on the analysis of concept struc-
tures. In K-CAP ’05: Proceedings of the 3rd international conference on Knowledge
capture, pages 51–58. ACM Press, 2005.



2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 28–37, 2001.

4. A. Borgida, T. Walsh, and H. Hirsh. Towards measuring similarity in description
logics. In Proceedings of the Description Logics Workshop, 2005.

5. T.M. Cover and J.A. Thomas. Elements of Information Theory. Series in Telecom-
munications. Wiley, 1991.

6. A.H. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In SIGMOD Conference, 2001.

7. M. Ehrig, J. de Bruijn, D. Manov, and F. Martin-Recuerda. State-of-the-art survey
on Ontology Merging and Aligning V1. Technical Report Deliverable 4.2.1, Institut
AIFB, Universität Karlsruhe, July 2004.

8. T. Gruber. A translation Approach to Portable Ontology Specification. Knowledge
Acquisition, 5(2):199–221, 1993.

9. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 2005.

10. Y. Kalfoglou, B. Hu, D. Reynolds, and N. Shadbolt. Semantic integration tech-
nologies. 6th month deliverable, University of Southampton and HP Labs, 2005.

11. R. Korfhage. Information storage and retrieval. Wiley Computer Publishing, 1997.
12. O. Lassila and R.R. Swick. Resource Description Framework (RDF) Model and

Syntax Specification. W3C, 1999.
13. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings

of the 13th International Conference on Knowledge Engineering and Knowledge
Management., pages 251–263. Springer-Verlag, 2002.

14. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
W3C, 2003.

15. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In Porceedings of
the 18th International Conference on Data Engineering (ICDE), pages 117–128,
2002.

16. G. A. Miller. WordNet; a Lexical Database for English. Communications of the
ACM, 38(11):39–41, 1995.

17. A. Rector and J. Rogers. Ontological Issues in using a Description Logic to Rep-
resent Medical Concepts: Experience from GALEN. In Proceedings of IMIA WG6
Workshop, 1999.
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